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Project 1: Concepts and Requirements Thinking for an Ideal ICU
Abstract
Purpose: Patient safety issues lead to hundreds of thousands of patient deaths and many more preventable 
harms per year. We hypothesize that most of these adverse events could be prevented by designing a 
system to accomplish these goals.
Scope: The ICU was selected as the care setting of interest because of its complexity and the acute nature 
of patients. To further focus the research effort, the problem of pressure ulcers was selected because of the 
broad adverse impact this condition causes.
Methods: We outlined a systems engineering program known as the AI Patient Safety Learning Lab 
Framework based on previously successful models used by the military. We further applied these 
concepts to Pressure Ulcer Prevention (PUP) using established systems engineering tools. The PUP 
healthcare environment was analyzed in the presence of key healthcare stakeholders to devise a Concept 
of Operations (PUP CONOPs). The PUP CONOPs was used to guide design thinking activities and 
aiding in identification, prioritization, and evaluation of potential PUP solution concepts.
Results: Concepts for HRICU operational needs were outlined. A PUP CONOPs outlined key operational 
needs, metrics, and use cases for pressure ulcer prevention. Design thinking days yielded nine concepts 
for further exploration, which were scored in priority order. Finally, the PUP CONOPs evaluation 
provided recommendations for two existing solution concepts for integration into a system to predict, 
prevent, and treat pressure ulcers.
Key Words: High-reliability intensive care unit (HRICU), systems engineering, patient safety, pressure 
ulcers, concept of operations (CONOPS), Quality Function Deployment (QFD)

Purpose
Patient safety issues lead to hundreds of thousands of patient deaths and many more preventable 
harms per year. It is hypothesized that most of these adverse events could be prevented if a 
system that worked for the patients, providers, and other stakeholders was developed and 
implemented. We refer to this as the high-reliability ICU (HRICU). We hypothesize that systems 
engineering methods can provide healthcare with a model for iterating a broad objective of the 
HRICU. To this end, the objectives are:

Objectives:
1. Create a systems engineering (SE)-guided framework that can be used to create a 

high-reliability ICU in an iterative manner
2. Apply SE framework to address a common, preventable harm in the intensive 

care unit (ICU)
3. Draft a Systems Engineering Concept of Operations for the model harm case 

study
Scope
Healthcare has taken an approach to improvement that has been effective but lacks 
coordination and scalability. Systems engineering has proved valuable when systems become 
complex in technical, workflow, and information management. Although the HITech Act has 
moved the industry toward interoperability, for instance, solutions must be planned and must 
lead to integrated and affordable solution. Despite the recognition that systems engineering 
tools can help, healthcare leaders still struggle with many patient safety issues that lead to 
hundreds of thousands of patient deaths and many more preventable harms per year.1
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Much of the problem lies in the way the current system was built and now operates. Healthcare 
systems have evolved with a high dependence on expertise, and harms are largely addressed 
individually (e.g., sepsis). This is expensive and ineffective. In many areas, standardization could 
replace expertise to great improvement. Our comprehensive program plan incorporates rapid 
prototyping and systems engineering methods, using a model developed for the US Navy’s 
submarine force.2 Our goal is to create a Systems Engineering guided framework to eventually 
create a high-reliability ICU (HRICU).
To accomplish this larger goal, we began by applying the Systems Engineering guided 
framework to address a common preventable harm in the ICU. The preventable harm we selected 
is that of pressure ulcers because of its large adverse impact. Pressure ulcers are an epidemic 
problem in the United States, affecting 2.5 million people; they are associated with 60,000 deaths 
and are estimated to cost $9.1-$11.6 billion annually.3,4 Care costs and patient length of stay 
increase and quality of life decreases with each occurrence of a pressure ulcer.5 Thus, pressure 
ulcers represented a meaningful challenge area to demonstrate how rapid prototyping, human-
centered design, and systems engineering tools could collectively facilitate the solution process 
in healthcare.

Methods
Development of the Learning Lab Framework - We developed a comprehensive program 
plan, identifying the sequence of activities required for integration of a healthcare system of 
systems. The program plan is based on a similar plan developed by the US Navy’s submarine 
force. This Navy program capitalizes on design thinking and an open business model in a 
constrained budget environment.6 We outline a simplified programmatic framework to serve as 
the AI Patient Safety Learning Lab Framework in Figure 1, which served as a system 
development lifecycle (SDLC) to engineer an HRICU. We used human-centered design 
concepts, including a concept poster and storyboarding, to create an HRICU concept plan. To 
then evaluate this framework SDLC process, including its associated SE tools, we applied it to a 
well-known, yet enduring, patient safety issue: pressure ulcer prevention. We pursued 
framework steps 1 through 4 in Figure 1 in the context of pressure ulcer prevention. In the 
ideation phase (Figure 1, Step 2), we solicited the input of multiple stakeholders, including 
doctors, nurses, administrators, patients and families, patient advocates, engineers, researchers, 
specialty services, support services, payers, and others familiar with academic, industrial, and 
regulatory work pertaining to pressure ulcers, to develop relevant content for the Project 1 
products.

Establishing a CONOPS for a system to predict, prevent, identify, and treat pressure 
ulcers in the HRICU - An initial CONOPS template tailored for healthcare was derived by 
performing a literature search to identify existing 1) research on standardized approaches to 
CONOPS generation, 2) CONOPS development templates, and 3) healthcare-specific CONOPS 
activities. Once completed, stakeholder engagement was performed, consisting of four primary 
efforts: 1) a recurring bi-weekly transdisciplinary team meeting that spanned 3 months, 2) 
individual engagements with stakeholders to further document technical and operational context, 
3) review of the literature on pressure ulcer prevention to gather additional perspectives from 
stakeholders beyond our immediate reach, and 4) design thinking day to solicit candidate 
solutions ideas. As a final step, methods and findings from the pressure injury use case were fed 
back into the CONOPS (i.e., Step 3 and 4 below) to outline its application to Pressure Ulcer 
Prevention.
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Call for Innovation - We held an IDEO-style design thinking event to brainstorm new ideas for 
pressure ulcer prediction, prevention, or mitigation.7 Evaluative criteria for candidate solutions 
were developed based upon operational end user needs described in the CONOPS.

Quality Function Deployment (QFD) - A second series of workshops was organized to solicit 
input from the stakeholders to establish the quantitative metrics that would be used to score 
candidate solutions using a standard, SE industry-accepted method known as Quality Function 
Deployment (QFD). We selected the QFD process, a standard Systems Engineering method, to 
score candidate solutions for pressure ulcer prevention. The QFD is a seven-step process for the 
selection of candidate solutions based on effectiveness, performance, and resource constraints.8
It results in a solution score that allows ranking of potential solutions. The SE Quality Function 
Deployment (QFD) technique was conducted over the course of several workshops, utilizing the 
clinical expertise key stakeholders in wound care nursing and pressure ulcer prevention, and was 
administered by career Systems Engineers at the Johns Hopkins Applied Physics Laboratory.

Evaluation of candidate Pressure Ulcer Solution Space using the Learning Lab Model - We 
performed a market survey of existing products and current research for pressure ulcer 
prevention, but no formal industry solicitation was made. We created a test plan and held a 
simulation event to evaluate proposed solutions and their integration in the existing system of 
care using the CONOPS.

Results
The stepwise AI Patient Safety Learning Lab framework outlines a path to accomplish our goal 
of re-engineering healthcare; our project plan includes a series of interdependent stages 
depicted in Figure 1. These stages provide a rich innovation pipeline that couples concept and 
requirements development through laboratory-based assessment and transition of 
requirements to industry. Through this pipeline, best-of-breed solutions can be provided to 
industry for scaling and dissemination for wider impact. As depicted in Figure 1, seven major 
stages are associated with this approach.

Figure 1: Development Process and the Role of the AI Patient Safety Learning Lab
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Concept for Integrated Healthcare Delivery System: HRICU - We drafted a storyboard that 
captured 12 common tasks in the ICU. These are (1) admit the patient; (2) develop patient plan for 
diagnosis, treatment, and recovery; (3) communicate the plan, roles and responsibilities, and 
expectations to the care team; (4) monitor and assess progress; (5) coordinate care; (6) promote a 
healing environment; (7) prevent harms; (8) respond to patient needs; (9) discharge or transfer 
patient; (10) measure outcomes; (11) update processes and workflows; and (12) nurture a culture 
of learning and accountability. Using the storyboard, concept operational needs for the HRICU 
were identified and included (1) patient-centered care; (2) a healing environment; (3) actionable 
information; (4) coordination of care; (5) harm prevention; (6) resilient resources; and (7) learning 
and accountability.

Establishing a CONOPS for a system to predict, prevent, identify, and treat pressure ulcers 
in the HRICU - A comprehensive CONOPS was created as a communications tool for the team.  
A CONOPS defines the problem to be solved, lists high-level requirements, identifies the relevant 
metrics, and includes notable use cases. The CONOPS serves as a guide, providing the necessary 
information to ensure stakeholder concepts are evaluated through the lens of the system 
requirements and operational needs.

Call for Innovation

Design Thinking Results - We conducted a design thinking event with stakeholder input to 
brainstorm solution spaces for the pressure ulcer problem in the ICU. We used individual group 
voting, rapid prototyping, and cost versus impact mapping to distill the brainstorming content into 
candidate ideas for implementation. The output included nine concepts, six prototypes, and five 
distilled ideas that were later used to exercise the evaluative QFD method selected for the project. 
The ideas selected did not provide any defensible justification regarding why they were selected.  
The CONOPS was applied to how solutions would be evaluated using the QFD process defined 
below.
Quality Function Deployment (QFD) - Though design thinking days are a productive means of 
brainstorming innovations, they often yield numerous outputs that require rigorous analysis to 
filter and prioritize solutions for which to devote precious resources. To go from the divergent 
solution set generated in design thinking to a convergent solution set that would fulfill the 
CONOPs requirements, we performed QFD.

We followed the seven-step process to generate Measures of Effectiveness (MOEs) and 
Measures of Performance (MOP), to identify a list of nine different candidate solutions. These 
solutions that ranged in maturity from capabilities presently available at our institution to those 
requiring new research and development. We scored the candidate solutions using and an 
MOE/MOP scoring matrix and were able to create a decision support ranking grid seen in Figure 
2.
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Figure 2 - Candidate pressure ulcer solutions and their associated QFD solution scores. The nine solutions that were 
evaluated using QFD are shown on the vertical axis. The overall impact score of each solution based on the user-defined measures 
is displayed on the horizontal axis.  

The solutions spanned the categories of people, processes, and technology. Based on this 
analysis, the following solution concepts were identified in priority order for further use and/or 
development:

(1) Automated activity reminders;
(2) Pressure ulcer risk assessment tools;
(3) Clinician training/re-certification and needs reporting;
(4) Educational videos; and
(5) Patient pressure maps.

Evaluation of candidate Pressure Ulcer Solution Space using the Learning Lab Model - We 
conducted a limited market survey and institutional outreach and learned of several initiatives to 
prevent pressure ulcers. The first effort was an educational program assembled for Johns 
Hopkins Hospital. The educational program was evaluated using the CONOPs requirements, and 
this evaluation was provided to the program leaders. The educational program meets many of the 
requirements in the CONOPs and can be integrated into a larger Pressure Ulcer Prevention 
system.
A second initiative was an invention to detect and alert providers of pressure ulcer risks on an 
individual patient. This capability was viewed as a representative solution that might be received 
as part of a Learning Lab framework. The project team evaluated the device per CONOPs and 
provided guidance to the vendor on improvements to ensure its optimal integration into 
healthcare workflows. Though desirable, the novel sensor technology remains unproven and has 
not reached a point of maturity where it can be incorporated into the Pressure Ulcer Prevention 
system. The CONOPs could be used by the developers to expedite commercialization.

Conclusion - Quality improvement efforts are largely siloed, addressing individual harms while 
often pursuing solution spaces that do not consider downstream impact to other healthcare 
subsystems. Systems Engineering has been used successfully in other industries to deal with such 
complexities. Our program plan was defined in order to outline and demonstrate the application 
of a healthcare-specific SDLC (the AI Patient Safety Learning Lab Framework).
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The AI Patient Safety Learning Lab proved a feasible path for applying design thinking and 
rapid prototyping methods in tandem with rigorous SE methods to brainstorm and analyze 
system products and capabilities for implementation. Future work will demand additional 
resources to scale the Learning Lab framework in order to address all harms on the path to an 
HRICU. 

Project 2: Leverage Open Application Programming Interfaces (OAPI) to Eliminate 
Patient Harm, Optimize Patient Outcomes and Experience, and Reduce Waste

Structured Abstract
Purpose: The administration of high-alert medications requires the use of systems to prevent errors. The 
common system that requires independent verification of dose changes by a second clinician is error 
prone and inefficient. We postulate that the ability to integrate interoperable medication infusion pumps 
and medical records systems with existing dose adjustment algorithms can improve the safety and 
efficiency in the delivery of high-alert and other medications.
Scope: A nurse-managed insulin infusion protocol used at the Johns Hopkins Hospital, a test instance of 
the Epic Medical Record, and a commercially available infusion pump with open control access were 
selected to test and demonstrate our hypothesis.
Methods: We followed stepwise systems engineering practices with a plan to develop a novel system, the 
Smart Agent, to semi-autonomously administer intravenous insulin according to our hospital’s protocol 
for nurse-managed insulin infusion in the intensive care units (ICUs); 20 critical care nurses were 
presented with 12 simulated scenarios (six each between manual and Smart Agent) to assess accuracy, 
efficiency, workload, usability, and trust in the new system.
Results: Out of 120 scenarios, no errors were made with the Smart Agent system, and 20 errors were 
made with the manual system (16.6% of the 120 scenarios completed using standard of care). Participants 
rated the usability and workload of the Smart Agent significantly higher than the manual practice, and 
they rated trust similarly.
Key Words: interoperability, infusion pumps, medication error, medication administration, independent 
double-check, integration, insulin infusion

Purpose
This study compares the safety and efficiency of standard-of-care (SOC)/manual management of 
a modified Yale insulin infusion protocol with a bidirectional pump communication (Smart 
Agent) support tool. The Smart Agent tool supports bedside management of the insulin infusion 
protocol to improve safety and efficiency and reduces workload while increasing perceptions of 
usability of the technologies involved in the process. This study evaluated the effectiveness of 
this intervention at meeting those design criteria and generating additional formative input from 
frontline nurses, the ultimate end users of the system in development. This research will help 
characterize the potential benefits from these technologies and identify any latent risks to their 
introduction into actual care.

Objectives:
1. Develop a human in-the-loop infusion pump system using clinical decision support and 

command and control functionality to conduct a nurse-managed insulin infusion protocol
2. Compare automated algorithm results with clinical examples to validate software
3. Measure time and compliance with current, nurse-managed protocol for insulin infusion
4. Demonstrate that automation can be used to eliminate the need for an independent nurse 

double check.
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Scope
Medication administration errors remain the leading category of adverse patient safety events. In 
particular, high-risk medication errors may be life threatening.9,10,11 The majority of medication 
errors in the ICU occur during administration, and the leading causes include errors in 
documentation, failure to follow protocol, and communication.12 Current risk mitigation 
strategies to prevent medication administration errors often require human double checks, 
enhanced supervision by clinicians, increasing workload and putting a strain on productivity.13

A safe, productive system is possible today through clever use of technology. Open application 
programmer interfaces are increasingly available, though many systems still have proprietary 
interfaces or lack thoughtful integration; thus, devices are not interoperable. It is difficult to 
create decision support, predict patient risk, and monitor and improve performance. The potential 
of systems enabled through open interfaces to contribute to the elimination of patient harm is 
profound. From previous design thinking sessions, our team envisioned a bidirectional infusion 
pump system that would leverage open application programmer interfaces to improve the safety 
and efficiency of high-risk medication administration workflows. We hypothesized that such a 
system would reduce errors and workload, thus eliminating the need for an independent nurse 
double check.
We convened clinical stakeholders, including intensive care physicians, critical care nurses, 
and pharmacists, from Johns Hopkins Hospital in our effort to design, engineer, and test a 
bidirectional infusion pump system that leverage open interfaces. Subjects were observed in 
clinical settings or convened during initial design sessions and early prototype review 
meetings. Further, Johns Hopkins Hospital critical care nurses were subjects of a voluntary 
simulation study to evaluate the safety and efficiency of the project’s technology. All subjects 
participated voluntarily in the study activities.

Methods
Study Design - Principles of the Systems Engineering Development Lifecycle were tailored to 
conduct concept design, engineering, and laboratory validation phases of the proposed 
interoperable infusion pump system, as described below.

Design & Engineering - The study team conducted design thinking meetings to brainstorm and 
visualize potential integration solutions for bidirectional infusion pump systems. The solutions 
were developed to address the specific use cases of 1) managing patient serum glucose levels with 
insulin infusions and 2) managing patient postoperative pain using intravenous narcotics 
delivered with patient-controlled analgesia (PCA) systems. The purpose of these sessions was 
to identify design requirements and specifications for a candidate solution. Attendees 
included pharmacists, nurses, intensive care physicians, and engineers from various 
disciplines. Additionally, workflow analysis was performed through direct observation of 
critical care nurses who were performing insulin dose calculations and adjustments by a human-
factors psychologist. Observations were tracked using a standardized data collection tool. 
We chose to pursue development of a bidirectional infusion system using the nurse-managed 
insulin workflow due to its simplistic, clinically validated algorithm, requirement for the nurse 
double check, and single source of clinical data in the EHR.
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Verification of Insulin Infusion Prototype - A prototype system known as Smart Agent was 
developed based on user requirements for a modified nurse-managed Yale Insulin Infusion 
Protocol used at the Johns Hopkins Hospital. The pilot solutions applied components of the 
Medical Infusion Pump (MIP) software that was previously co-developed by APL and the 
Armstrong Institute under AHRQ funding (Grant No. HS20460). This full-stack program with 
user interface (Figure 4) was subsequently coupled to the MIP and open interface VistA 
medical record. The project team created a technology demonstration to simulate the 
bidirectional communication and control of insulin infusions by the Smart Agent algorithm 
using test scenarios to explore the full range of clinical situations. The project clinicians made 
system improvement recommendations with regard to design, appearance, and safety 
vulnerabilities. These recommendations were prioritized and implemented in the final model of 
the prototype for further testing.
System Finalization - User feedback was incorporated into a final set of requirements for the 
Smart Agent insulin infusion system. To optimize integration of the Smart Agent system into 
current workflows, the project team collaborated with the Epic Medical Record team at the Johns 
Hopkins Health System to embed the clinical decision support interface into the medical record. 
Additionally, Smart Agent was interfaced with a commercially available infusion pump, which 
permitted access to its electronic controller (Hospira PLUM 360).
Validation - To demonstrate safety and efficiency gains of the Smart Agent infusion 
system, clinician users were subjects of simulated scenarios comparing the standard of care 
workflow with the newly engineered system. Safety was measured as the rate of errors in 
calculating any necessary rate changes. A correct rate change was calculated using the 
infusion protocol. An observer logged the new rate calculation of the nurse for each scenario, 
and this was compared to the correct rate change. Efficiency was measured as the time to 
complete each scenario. Timing data were captured by an observer using a tablet timing 
application. Workload was measured by participant perceptions of effort. The NASA Task Load 
Index (TLX)14 was administered after each block of scenarios. Completing the NASA-TLX 
involves two steps. User trust and perceptions of usability were measured using two surveys. 
The Systems Usability Scale (SUS) is an 11-item survey, widely used in research and 
commercial product development. 15 Trust in the system was measured using a previously 
validated measure of trust in automation. 16 For the repeated measures in this study (efficiency, 
workload, and perceived trust), we used a repeated measures, within-factors ANOVA, and 
the F statistic to test for differences between the two conditions (i.e., manual standard-of-care or 
Smart Agent system). For perceived usability, which was completed only at one time point, a 
paired samples t-test was conducted to determine differences in trust and perceived 
usability.

Participants’ reactions to the two systems were recorded in session notes during the 
structured debrief and qualitative thematic analysis was performed. Potential barriers to use of 
the Smart Agent system or ideas for further refinement of the system were identified.
Results
Design and Engineering - The final version of the SA integrates intelligent clinical decision 
support with the EMR and the medication infusion pump. SA is launched from the EMR as a 
web service call and displayed within a window of the active record. Key design features are the 
following:

1. Easily accessible, within workflow, clinical decision support tool that automates the 
dosing calculation – The SA extracts patient’s lab and insulin infusion data from the 
EMR, calculates a dose rate change using these and the imbedded Yale algorithm, 
and presents the dose rate change result to the user. 9



A clinician can accept and use this recommendation as determined by regulations and 
institutional policy. An important feature of the SA is the graphical mapping of the dose 
selection criteria onto the protocol. This gives the clinician the ability to see exactly how 
the insulin dose was determined. Importantly, these design features eliminate the need 
for an independent nurse double check. 

2. Automated pump programming and EMR documentation with nurse verification - SA
 can be used to directly change the insulin dose by sending the automated rate calculation

 to the pump once a dose rate change is accepted by the nurse. By design, the SA is not
 fully automated. The SA requires a clinician to accept and approve the updates but

 reduces manual steps, including error-prone manual calculations and keying in values to
 the pump and medical record. By decoupling the functions of dose determination from

 changes made to the infusion pump and EMR, we have created a system that could be
 used in current workflow for CDS from the system that would require regulatory

 approval for use.

Figure 3: Smart Agent User 
Interface Prototype. This user interface 
mockup was presented to clinical users on 
the prototype system. A) Table of last three 
glucose values; B) most recent glucose 
values with C) refresh button and D) lab 
select button. E) Users can view the 
calculations embedded in the protocol or 
F) stop the infusion. G) The current and 
recommended infusion rates are displayed. 
The new insulin rate can be H) entered 
manually, I) accepted, or J) 
deferred.

Validation - Twenty critical care nurses completed the evaluation. Participants ranged from less 
than 1 to 37 years of nursing experience (M = 5.031, SD = 8.846) and from less than 1 to 35 years 
of critical care nursing experience (M = 4.481, SD = 8.602). They most commonly reported having 
patients on an insulin infusion protocol once per month (N=10, 50%), but seven participants 
(35%) reported having these patients once per week, and three participants (15%) reported 
having these patients every shift or more than once per week. Figure 4 illustrates main 
study findings for efficiency, workload, usability, and trust.
Safety - The rate of errors in calculating a new infusion rate was significantly different between 
the two systems, with the Smart Agent performing better than manual (X2 = 21.82, df=1, 
p<.001). Out of 120 scenarios, no errors were made with the Smart Agent system, but 20 errors 
were made with the manual system (16.6% of the 120 scenarios completed using standard of 
care).
Efficiency - Participants completed the protocol significantly faster using the Smart Agent 
system (M=58.24 seconds per trial, SD=22.67) than with the manual standard-of-care system 
(M=91.32, SD=29.86; F(1,244)=100.44; p < .001). There was a mean difference of 33.08 
seconds, favoring the Smart Agent condition.
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Workload - Participants rated the overall workload of the Smart Agent system (M=6.33, 
SD=2.38) significantly lower than the manual system (M=10.23, SD=2.74; F(1,74)=44.39; 
p<.001).
Due to technical issues with the eye tracking system (e.g., problems with system calibration or 
general functioning), data were usable for only 10 scenarios (59%) across 17 participants. Three 
participants were excluded from using the eye tracking system due to wearing eyeglasses.
Perceptions of trust and usability - Participants rated the usability of the Smart Agent system 
(M=86.88, SD=10.73) significantly higher than that of the manual system (M=52.00, SD=17.97; 
t (19)=-6.23; p<.001). Participants did not rate their level of trust as significantly different 
between the Smart Agent system (M=63.33, SD=12.17) and the manual system (M=61.13, 
SD=11.31). 

Figure 4. Technical Performance of Smart Agent-Nurse System. A. Percentage of Participants by frequency of performance 
of nurse-managed insulin infusion protocol in clinical practice. B. Comparison of calculation error rates in simulation activities 
between manual nurse-managed insulin infusion protocol and Smart Agent system. C. Comparison of time to perform protocol 
between manual and Smart Agent system.

Figure 5. Smart Agent Clinical Users Survey Results. A. Usability of manual protocol vs. Smart Agent on the System 
Usability Scale out of 100. B. Comparison of workload between manual and Smart Agent using NASA-TLX survey. C. 
Comparison of user reported trust between the manual and Smart Agent system.
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Discussion - We believe that there are a lot of opportunities to improve care and decrease 
clinical workloads using medical infusion pump integration. Our team selected a high-risk, 
nurse-managed infusion in which serial dose calculations, pump programming, and medical 
record documentation are, in-whole or in-part, manual practices. Smart Agent addresses error 
prone steps in this workflow while reducing workload demands. Automated rate calculations 
eliminate the potential for manual calculation and pump programming errors, reduce the number 
of overall steps, and should eliminate the need for an independent nurse double check. 
As evidenced by survey respondents, our user-centered design resulted in a system that clinicians 
find safe and usable. By localizing relevant data and actionable steps to a given screen, we have 
reduced overall cognitive workload and increased compliance with protocol steps that may be 
omitted in manual workflows. Importantly, a demonstration of the user interface to the Johns 
Hopkins Hospital Glucose Steering Committee was met with support to implement as a smart 
calculator with the belief that it would reduce calculation errors associated with poor usage of the 
current paper nomogram.

Limitations of the technical workflow include its specificity of the Johns Hopkins Nurse-
Managed Insulin Infusion Protocol; generalizability to protocols not driven by lookup tables, 
including physician-managed protocols or those that rely on clinical judgment. Additionally, 
only a single pump and medical record were tested, and our ability to apply pump controls even 
in a laboratory setting was limited by the manufacturer’s willingness to develop with us.

Conclusion - Using systems engineering methods and user-centered design principles, we 
automated the nurse-managed Johns Hopkins insulin infusion protocol in a test system and 
described the functional requirements that would be necessary for the system to function 
clinically. The Smart Agent system dynamically controls insulin infusions to reduce the time and 
workload burden on clinical staff, improve accuracy and efficiency of the protocol, and prevent 
calculation errors that can lead to patient harm. When compared to the current standard-of-care 
insulin infusion process, the Smart Agent system was more efficient, safer, less workload 
intensive, and perceived by nurses as more usable and similarly trustworthy. This study clearly 
illustrates the potential of this approach to jointly optimize safety, efficiency, and workload 
considerations in a way not possible without addressing system interoperability. Although this is 
a particular example we believe this approach can be replicated for a number of medications.

Project 3: Develop and implement an indicator of unit-level stress in an 
engineered care system to predict and mitigate risk
Abstract
Purpose: We postulate that unit, patient, and disease factors may contribute to the susceptibility of 
patients to preventable harms. We further hypothesize that this risk can be empirically derived and 
calculated as a Susceptibility Index. This index could then be used to minimize the risk of patient harms 
and achieve High-Reliability ICU status. The purpose of this study was to determine if data on patient 
conditions, unit environment, and best care practices can be aggregated and analyzed to create a 
prediction model for adverse outcomes in the ICU.
Scope: Involved were 510 surgical ICU patients admitted to a 12-bed mid-Atlantic academic hospital 
from 1 April to 30 September 2015.
Methods: This was a retrospective study in which data were drawn from EMR, research data, manpower 
data, and the error reporting system. The binary outcome measure was whether each patient experienced 
an adverse outcome (1=yes, 0=no). Hierarchical stepwise logistic regression was applied sequentially to 
analyze the influences of patient conditions, unit environment, and therapies received on ICU adverse 
outcome. This predictive model was validated using machine learning algorithms.
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Results: Patients who were older and more ill faced increased susceptibility to ICU adverse events. 
Therapies that contradicted delirium best practices or mobility practices, or that used multiple or 
synchronous mode ventilators, also increased patient susceptibility to ICU adverse events. However, 
having more clinical technicians in the ward and the use of a proton pump inhibitor or tracheostomy 
placement reduced ICU patients’ susceptibility to adverse events. Machine learning algorithms validated 
the predictive model given a limited set of data.
Key Words: age, DRG, staffing, mobility, delirium, ventilator, central line

Purpose
The susceptibility of ICU patients to harm may be a function of the dynamic relationships 
between several unit-level factors. For example, staffing levels and ‘capacity strain’ may erode 
safety culture and weaken compliance with best care practices. Leveraging data sources may 
unearth unit-level interactions that are not perceptible to a single ICU team member. We propose 
that integrating ICU patient, team, and environmental data from several disparate sources can 
predict a unit's susceptibility to propagate patient harm. Here, we focus on the methods and 
challenges of integrating data for this purpose.
Objectives:

1. Collect the patient, unit, and therapy-based factors that contribute to adverse patient 
outcomes in the ICU.

2. Curate the factors data for use in analysis.
3. Perform data analysis using regression and machine learning methods to demonstrate that 

unit-based factors can be used to create a meaningful index that predicts patients’ 
susceptibility to preventable harm.

Scope
Medical errors continue to be a major cause of death and disability in the US. Estimates of 
mortality from preventable harm are in the range of 215,000 deaths/year.17 Preventable harms 
have been largely addressed at a systems level by the creation of “care bundles” that incorporate 
best practices for prophylaxis of specific harms. Critical care units are a system of systems at the 
nexus of the sickest patients, the most complex equipment, and a highly trained workforce. In 
this system, patients who have critical, life-threatening conditions receive constant monitoring 
and therapy to prevent significant injuries and death. In the ICU, multidisciplinary teams have 
been established to improve and standardize the care of patients. However, it is estimated that 
there are still over 3.6 preventable harms for every 100 ICU patient days.18 Many factors 
contribute to harms propagation. These factors include patient conditions, unit-level factors, and 
provider team factors. The standard approach to prophylactic care often fails because the system 
model assumes that all patients and situations are approximately “equal.” In reality, we know 
that this is not true. For example, prescribing ambulation therapy to a patient who is physically 
unable to walk is destined to fail. To determine if there is a more comprehensive indicator of 
potential for patients to suffer harm, we hypothesized that unit-level factors and patient 
conditions may accurately predict risk of patient harm.

The Surgical ICU at Johns Hopkins Hospital was selected as the source for testing this 
hypothesis due to the existence of the Emerge dataset, a database comprising hundreds of 
patient-days’ worth of process and outcomes data for five preventable ICU harms.
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Methods
Unit Susceptibility Index Framework – We created a conceptual model using a causal loops 
framework to test the hypothesis that numerous, disparate events and conditions contribute to 
unit-level susceptibility to harm (Figure 6). This framework was based upon input from the 
medical literature, clinical experts, and systems engineers. Conceptual nodes within the 
causal loops model were linked to data sets from the Surgical ICU at Johns Hopkins Hospital.

Figure 6. The Causal Loop Model for Susceptibility to Preventable Harm in the ICU. Postulated contributory data 
categories are illustrated in boxes. The single outcome variable is labeled “preventable harms” and includes the 
harms data that had been collected from the Emerge project as well as some standard ICU performance metrics. 
We postulated that elements that had a solid line would contribute positively to susceptibility while dotted lines 
would decrease susceptibility. This a priori assignment had no bearing on the analysis. Dark green elements are 
those that were collected while those in light green were not collected either because of availability or because 
they could not be incorporated with the time scale of this analysis.

The model demonstrates unavoidable levels of endogeneity, because we hypothesized that the 
occurrence of a preventable harm actually increased the susceptibility to further harmful events.

Data Aggregation - Data from 2434 patient days spanning 6 months were compiled, including 
60 manually collected elements to calculate SOFA and TISS scores for acuity and workload, 
respectively. Unplanned events, such as cardiopulmonary arrests and intubations, were 
documented. Compliance with best care practices was captured via an EMR-integrated 
application. Nursing schedule and assignment data were integrated to assess nurse experience 
per shift, support staff available, sick calls, orientees, nurse-patient ratio, and planned and 
unplanned admissions. VTE events, CLABSI, VAP, and hand hygiene rates were extracted from 
the hospital’s epidemiology and safety reporting systems.

Data Analytics - The outcome measure on ICU All-Cause Adverse Outcome was a binary 
variable, which was coded as ‘1’ if a patient experienced at least one event pertaining to central 
line-associated blood stream infection (CLABSI), Clostridium difficile (C.diff), ventilator-
associated pneumonia (VAP), intubation, a delirium episode, an arrest, or a readmission to the 
ICU and as ‘0’ otherwise.
There were three groups of predictor variables. The first group was related to the patient’s 
presenting conditions, age, gender, race, and severity of illness (measured by diagnosis-related 
group (DRG) and relative weight).
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The second group was related to the unit environment measured by a binary variable on whether 
the patient was admitted after 5 pm; seniority of, number of hours worked, and number of 
overtime hours worked by the primary, preceptor, and orientee nurses; and the number of clinical 
and non-clinical technicians who were working during the shift. The third group included best 
practice therapies applied to the patient. These were each coded as binary variables of ‘1’ if the 
patient received a central line bundle, mobility therapy, mechanical and pharmacological venous 
thromboembolism (VTE) therapy, ventilation therapy, tilting the head of the bed more than 30 
degrees, using tracheostomy, subglottic suction, oral care, in-line suction, spontaneous breathing 
trial, proton pump inhibitor, delirium therapy, or needed isolation for infection.

Hierarchical stepwise logistic regression was applied sequentially as follows. First, the 
patient’s presenting conditions were regressed against the outcome variable, followed by the 
conditions in the unit environment. Next, the therapy choices were regressed against the outcome 
variable to determine the incremental contributions of each group of factors on ICU adverse 
outcomes. Finally, this predictive model was validated by machine learning algorithms.

Limitations - Six months of data from one hospital in one ICU limited the generalizability of the 
results to other hospitals and other types of ICUs. These limitations present opportunities to 
expand the study using more longitudinal data from other hospitals and in other types of ICUs.

Results
Principal Findings - The hierarchical stepwise logistic regression indicated that older 
patients with higher DRG relative weights were more susceptible to adverse outcomes in the 
surgical ICU. Six of the 18 specific therapies that were compiled in our database (Table 1) were 
associated either positively or negatively with the composite adverse outcomes. When patients 
did not receive care according to the delirium care bundle or, when multiple ventilator modes 
were employed, there was also increased susceptibility to adverse events in the ICU. In contrast, 
susceptibility to an adverse ICU event appeared to be reduced by an increased number of clinical 
technicians or the appropriate use of a proton pump inhibitor or a tracheostomy. Patient gender 
and race were not significantly associated with ICU adverse outcomes after unit conditions and 
therapy choices were considered. Perhaps surprisingly, we found that the application of 
multiple different modes of mechanical ventilation, the use of a synchronous mechanical 
ventilation mode, and the use of standard mobility protocols were associated with worse 
outcomes. With respect to mechanical ventilation, the use of multiple modes may simply be a 
marker of significant respiratory failure, or it may suggest that common, but unproved, 
therapies may be contraindicated more frequently or even injurious. As expected, there was a 
positive association between adverse outcomes and when delirium best practices were not 
applied.

More important for the objective of this study is the possibility that organizational 
factors may play a role in the risk propensity of an ICU environment. We included 11 
measures of organizational design to ascertain erosion of the capacity of providers to monitor 
patient well-being and deliver timely interventions. We found that the number of clinical 
technicians is protective (reduces the probability) of all-cause adverse outcomes. Finally, our 
logistic model returned an area under the curve (AUC) statistic of 72.2%. Given the limited 
number of factors found to be statistically significant, this result indicates an excellent fit of the 
data to the theoretical model.
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Table 1: Hierarchical Stepwise Logistic Regression for Risk of All-cause Adverse Outcome. For 
clarity non-significant variables were excluded from the table (but were included in the logistic regression 
model). 

Having performed a proof of concept for the causal loops model using the regression, 
we applied machine learning (ML) techniques to analyze the data in a non-biased manner. 
Because our data sets were relatively sparse for ML methods, we used four ML-based 
prediction models that use algorithms that are relatively less data dependent. These were the 
Decision Tree Classifier, Random Forest Classifier (RF), Support Vector Machine (SVM), and K 
Nearest Neighbor (KNN) classifier. After optimization with validation curves and grid-
search, the algorithms with the optimal parameters were trained with all observations in the 
training set (approximately 80% of the entire data set). Subsequently, the optimized-and-
trained model was used to predict the independent variables in the test set. The RF, SVM, 
and KNN all had very good area under the receiver operator curves (AUROCs) (Fig. 7). In 
addition, these ML predictive models serve to indirectly validate the explanatory regression 
model.

Figure 7. Receiver Operator 
Curves for Machine Learning 
prediction of all-cause harms. 
The SICU databases were 
evaluated using optimized K-
Nearest Neighbor (KNN, in red), 
Support Vector Machine (SVM, in 
green), or Random Forest (RF, in 
blue). The AUC for each algorithm 
is given in the text.
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Table 2 is a comparison of the logistic regression with all of the ML analyses. The results 
demonstrate the superiority of the ML techniques.  

Model AUROC Precision Recall F1 Score BACC MCC 10x CV AUROC Mean 10x CV AUROC StDev 
Logistic Regression 0.7578 0.8393 0.2327 0.3643 0.5913 0.2574 0.7864 0.064 
Decision Tree Classifier 0.7062 0.8861 0.4431 0.5908 0.6895 0.4288 0.7939 0.0623 
Random Forest Classifier 0.8157 0.8375 0.5743 0.6814 0.7245 0.4659 0.8544 0.0399 
Support Vector Machine (RBF Kernel) 0.8619 0.8381 0.7302 0.7804 0.7857 0.5721 0.8078 0.0392 
K-Nearest Neighbors Classifier (K=5) 0.8763 0.8435 0.7871 0.8143 0.8114 0.6217 0.8556 0.0273 

Table 2: Comparison of Models to Predict Susceptibility of ICU Patients to Preventable Harm 

In particular, two algorithms, the KNN and SVM, showed relatively high F1 scores, which 
indicated high levels of precision and recall in predictions. The results of the prediction models 
strongly validate the hypothesized model of effects (as represented in the regression models).

Discussion - This study is the first application of statistical and machine learning techniques to 
develop a prediction model for the susceptibility of patients in an ICU to preventable harms. It is 
also unique because it simultaneously considers both organizational and clinical factors in 
determining the reasons for all-cause adverse outcomes in the SICU. ICU clinicians, 
administrators, and even patients believe that they know the factors that compromise patient care 
and contribute to avoidable harm. For example, the perception that nurse staffing and patient acuity 
contribute to harm have motivated mandatory staffing ratios.19 Though perceptions are strong 
in many areas, the applicability of the evidence to critically ill patients may be questioned.20 In 
this study, we did not find evidence that organizational design or nurse experience and 
staffing was associated with adverse outcomes. This may be an example of a case where 
misperceptions have long misguided unit functions. However, we did find that the number 
of clinical technicians provided a protective effect. It is not surprising that clinical 
technicians may improve care processes because, in our system, their major role is precisely 
for care delivery.

Although this pilot study is limited in scope to the surgical ICU and over time to a 6-
month period, the findings suggest intriguing directions for future research. The findings of the 
logistical regression support some activities while calling others into question. Although this may 
be surprising at first, it should be remembered that many elements of best care practice 
bundles have been established from studies using very small numbers of patients and low effect 
sizes. Our techniques may become an important tool in improving the effectiveness of best care 
practice bundles over time and creating a learning healthcare system. Despite the limited data 
set, with relatively lower levels of observed variance and the restricted access to patient data, 
the results of the ML prediction models are very promising. These models show that there is 
considerable accuracy in predicting the Target Class based on the feature set. The hypothesized 
variables when transformed into a feature used for prediction deliver significant levels of 
accuracy in predicting adverse outcomes. This indicates that out project goal of creating a 
real-time susceptibility index can be achieved with improved automation of data collection and 
cloud-based computing. Moreover, such a susceptibility index could be used to prompt 
meaningful interventions to lower the susceptibility of patients in the ICU to harm.

As with all retrospective studies that attempt to use multiple sources of data to test a 
multifactorial model, ours encountered challenges in data collection and curation. The 
collection of EMR data was technically straightforward, but we found that useful data were 
also contained in provider notes and are not structured for easy extraction.
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Clinical and operational systems remain disjointed, making comparison of unit- and 
hospital-level variables with patient outcomes challenging. Because we collected data from 
two sources (nurse shift rotation schedules and profiles and patient EMR), matching 
the sets using manual matching and programming required significant project 
resources. We had to interpret, classify, and code notes and conduct-associated reliability 
checks to minimize error and to ensure that the data were comparable across patients, time 
periods, and providers. This kind of data management is not compatible with an 
automated susceptibility index. Our experience suggests that an idealized system 
architecture would require integrated data systems in order to operationalize a real-time 
predictive analytics system like the Susceptibility Index.

We do not believe that the findings were severely biased by the structural limitations of 
the study, but they clearly limit the power of the test. That is, we may have found more 
determinants of unit-level safety with a larger sample consisting of a longer time period and 
across more ICUs. In contrast, we may have discovered some factors that will not be significant 
when exposed to a broader patient population. To address these limitations, in future studies, we 
plan to collect data over a longer time period and across a larger set of ICU types. In addition, we 
believe that physician-related rotation and demographic variables may play a role, because 
many of the therapies were ordered by physicians, often based on judgment.

Conclusions - In this first-of-its-kind pilot study, we attempted to determine the organizational 
and clinical factors associated with all-cause adverse outcomes in a surgical ICU. We found 
that both types of factors were important. Limitations in sample size and time period prevent us 
from making statements of causality, but our results suggest that by expanding the sample 
size and lengthening the time period, we are likely to achieve more robust findings that could 
guide staffing policies as well as personalize protocol-driven interventions in the ICU. The 
stepwise hierarchical logistic regression analysis identified therapies and conditions that 
appear to either prevent, contribute to, or have no apparent effect on the harms outcomes 
measured. This analysis begins to shed new light on the relative importance of elements within 
and outside of care bundles. The calibration of this analysis is only fair and is limited by a 
number of factors, such as a missing data and the inclusion of only a single ICU. We next applied 
machine learning classification algorithms to overcome limitations of regression analysis and of 
our data sets. The machine learning analysis of the data predicted the likelihood of an adverse 
event with greater than 80% accuracy in each of three algorithms. Together, these results 
indicate that data visualization can improve performance while more expansive data collection 
and advanced analysis can improve risk prediction and better define contributors to harm.
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