Appendix III: Reliability table

Reliability testing for Coverage PI: metric rates for 2,000, 5,000, and 10,000 samples. Samples were constructed randomly three times for each sample size.									
	N=2,000			N=5,000			N=10,000		
IL	0.9278	0.9291	0.9193	0.9303	0.9346	0.9310	0.9296	0.9324	0.9348
	(0.9185, 0.9371)	(0.9199, 0.9382)	(0.9094, 0.9293)	(0.9245, 0.9361)	(0.9289, 0.9402)	(0.9253, 0.9367)	(0.9255, 0.9338)	(0.9283, 0.9364)	(0.9308,0.9388)
LA	0.9458	0.9440	0.9417	0.9401	0.9459	0.9462	0.9417	0.9440	0.9436
	(0.9383, 0.9534)	(0.9363, 0.9517)	(0.9337, 0.9497)	(0.9350, 0.9452)	(0.9411, 0.9507)	(0.9414, 0.9510)	(0.9382, 0.9452)	(0.9405, 0.9474)	(0.9401, 0.9471)
MT	0.8682	0.8714	0.8792	0.8657	0.8603	0.8660	0.8701	0.8716	0.8690
	(0.8578, 0.8786)	(0.8610, 0.8818)	(0.8690, 0.8894)	(0.8590, 0.8725)	(0.8534, 0.8672)	(0.8592, 0.8728)	(0.8654, 0.8748)	(0.8669, 0.8762)	(0.8643,0.8738)
NC	0.9140	0.9104	0.9144	0.9129	0.9131	0.9142	0.9144	0.9119	0.9135
	(0.9051,0.9228)	(0.9012, 0.9196)	(0.9054, 0.9233)	(0.9072,0.9185)	(0.9074, 0.9187)	(0.9085, 0.9199)	(0.9104, 0.9183)	(0.9079, 0.9159)	(0.9095,0.9175)
NH	0.8996	0.8950	0.8903	0.8910	0.8871	0.8919	0.8866	0.8907	0.8944
	(0.8901, 0.9091)	(0.8856, 0.9045)	(0.8804, 0.9001)	(0.8848, 0.8973)	(0.8807, 0.8934)	(0.8856, 0.8982)	(0.8821, 0.8911)	(0.8863,0.8951)	(0.8901,0.8987)
NY	0.9075	0.9106	0.8942	0.9020	0.9019	0.9022	0.8991	0.9044	0.8950
	(0.8982, 0.9167)	(0.9012, 0.9199)	(0.8840, 0.9044)	(0.8958, 0.9082)	(0.8957, 0.9082)	(0.8961, 0.9084)	(0.8947, 0.9036)	(0.9001,0.9087)	(0.8904,0.8995)
OR	0.8406	0.8452	0.8395	0.8471	0.8381	0.8456	0.8391	0.8411	0.8433
	(0.8301, 0.8511)	(0.8348, 0.8556)	(0.8289, 0.8501)	(0.8405, 0.8536)	(0.8314, 0.8448)	(0.8390, 0.8522)	(0.8343, 0.8439)	(0.8363, 0.8458)	(0.8386,0.8480)
UT	0.8385	0.8418	0.8389	0.8385	0.8381	0.8402	0.8366	0.8431	0.8412
	(0.8269, 0.8502)	(0.8304, 0.8532)	(0.8273, 0.8505)	(0.8311,0.8458)	(0.8308, 0.8455)	(0.8329, 0.8475)	(0.8313, 0.8418)	(0.8380, 0.8483)	(0.8360, 0.8464)