1. Mitchell P, Wynia M, Golden R, McNellis B, Okun S, Webb CE, Rohrbach V, Von Kohorn I. Core Principles & Values of Effective Team-Based Health Care. Discussion Paper. Washington, DC: Institute of Medicine; 2012. https://nam.edu/wp-content/uploads/2015/06/VSRT-Team-Based-Care-Principles-Values.pdf. Accessed July 6, 2023.
2. National Academies of Sciences, Engineering, and Medicine. Improving Diagnosis in Health Care. Washington, DC: National Academies Press; 2015. https://doi.org/10.17226/21794. Accessed July 6, 2023.
3. Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database. NPJ Digit Med 2020;3:118. doi:10.1038/s41746-020-00324-0. Accessed July 6, 2023.
4. Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W. Deep learning to improve breast cancer detection on screening mammography. Sci Rep 2019;9(1):12495. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6715802/. Accessed July 6, 2023.
5. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017;542(7639):115-118. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8382232/. Accessed July 6, 2023.
6. Gargeya R, Leng T. Automated identification of diabetic retinopathy using deep learning. Ophthalmology 2017;124(7):962-969. https://pubmed.ncbi.nlm.nih.gov/28359545/. Accessed July 6, 2023.
7. Tschandl P, Rinner C, Apalla Z, Argenziano G, Codella N, Halpern A, Janda M, Lallas A, Longo C, Malvehy J, Paoli J, Puig S, Rosendahl C, Soyer HP, Zalaudek I, Kittler H. Human-computer collaboration for skin cancer recognition. Nat Med 2020;26(8):1229-1234. doi:10.1038/s41591-020-0942-0. Accessed July 6, 2023.
8. Lipkin Jr M, Putnam SM, Lazare A, eds. The Medical Interview: Clinical Care, Education, and Research. . New York: Springer-Verlag; 1995.
9. Szasz TS, Hollender, MH. A contribution to the philosophy of medicine: the basic models of the doctor-patient relationship. AMA Archives of Intern Med 1956;97(5):585-592. doi:10.1001/archinte.1956.00250230079008. Accessed July 6, 2023.
10. Ferguson WJ, Candib LM. Culture, language, and the doctor-patient relationship. Fam Med 2002;34(5):353-361. https://pubmed.ncbi.nlm.nih.gov/12038717/. Accessed July 6, 2023.
11. Dugdale DC, Epstein R, Pantilat SZ. Time and the patient-physician relationship. J Gen Intern Med 1999 Jan;14 Suppl 1(Suppl 1):S34-40. doi: 10.1046/j.1525-1497.1999.00263.x. Accessed July 7, 2023.
12. Elder A, Japp A, Verghese A. How valuable is physical examination of the cardiovascular system? BMJ 2016 Jul 27;354:i3309. doi:10.1136/bmj.i3309. Accessed July 7, 2023.
13. Gerke S, Rezaeikhonakdar D. Privacy aspects of direct-to-consumer artificial intelligence/machine learning health apps. Intell Based Med 2022;6:1-5. https://ideas.dickinsonlaw.psu.edu/cgi/viewcontent.cgi?article=1293&context=fac-works. Accessed July 7, 2023.
14. Babic B, Gerke, Evgeniou T, Cohen IG. Direct-to-consumer medical machine learning and artificial intelligence applications. Nat Mach Intell 2021;3:283-287.
15. ECG 2.0 App Indications for Use. https://www.accessdata.fda.gov/cdrh_docs/pdf20/K201525.pdf. Accessed July 7, 2023.
16. 510(k) Premarket Notification. Atrial Fibrillation History Feature. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K213971. Accessed July 7, 2023.
17. Friberg L, Rosenqvist M, Lip GY. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation Cohort Study. Eur Heart J 2012;33(12):1500-1510. doi:10.1093/eurheartj/ehr488. Accessed July 7, 2023.
18. Lip G. CHA2DS2-VASc Score for Atrial Fibrillation Stroke Risk. MDCalc. https://www.mdcalc.com/calc/801/cha2ds2-vasc-score-atrial-fibrillation-stroke-risk. Accessed July 7, 2023.
19. Nori H, King N, McKinney SM, Carignan D, Horvitz E. Capabilities of GPT-4 on medical challenge problems. arXiv:2303.13375. Cornell University. https://doi.org/10.48550/arXiv.2303.13375. Accessed July 7, 2023.
20. Pioli MR, Ritter AM, de Faria AP, Modolo R. White coat syndrome and its variations: differences and clinical impact. Integr Blood Press Control 2018;11:73-79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6233698/. Accessed July 7, 2023.
21. Wiens J, Saria S, Sendak M, Ghassemi M, Liu VX, Doshi-Velez F, Jung K, Heller K, Kale D, Saeed M, Ossorio PN, Thadaney-Israni S, Goldenberg A. Do no harm: a roadmap for responsible machine learning for health care [published correction appears in Nat Med. 2019 Oct;25(10):1627]. Nat Med 2019;25(9):1337-1340. doi:10.1038/s41591-019-0548-6. Accessed July 7, 2023.
22. Wiens J, Guttag JV. Active Learning Applied to Patient-Adaptive Heartbeat Classification. NIPS’10: Proceedings of the 23rd International Conference on Neural Information Processing Systems. 2010 Dec;2:2442-2450. https://dl.acm.org/doi/10.5555/2997046.2997168. Accessed July 7, 2023.
23. Parvaneh S, Rubin J, Babaeizadeh S, Xu-Wilson M. Cardiac arrhythmia detection using deep learning: a review. J Electrocardiol 2019;57S:S70-S74. doi:10.1016/j.jelectrocard.2019.08.004. Accessed July 7, 2023.
24. Saleh M, Jeannès RLB. Elderly fall detection using wearable sensors: a low cost highly accurate algorithm. IEEE Sens J 2019;19(8):3156-3164. https://ieeexplore.ieee.org/document/8603837. Accessed July 7, 2023.
25. Schwab K, Nguyen D, Ungab G, Feld G, Maisel AS, Than M, Joyce L, Peacock WF. Artificial Intelligence MacHIne Learning for the Detection and Treatment of Atrial Fibrillation Guidelines in the Emergency Department setting (AIM HIGHER): assessing a machine learning clinical decision support tool to detect and treat non-valvular atrial fibrillation in the emergency department. J Am Coll Emerg Physicians Open 2021;2(4):e12534. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8353018/. Accessed July 7, 2023.
26. Shen S, Pérez-Rosas V, Welch C, Poria S, Mihalcea R. Knowledge Enhanced Reflection Generation for Counseling Dialogues. 60th Annual Meeting of the Association for Computational Linguistics. Proceedings of the Conference, Vol. 1 (Long Papers), 2022 May 22-27:3096-3107. https://aclanthology.org/2022.acl-long.221.pdf. Accessed July 7, 2023.
27. Hershberger PJ, Pei Y, Bricker DA, Crawford TN, Shivakumar A, Vasoya M, Medaramitta R, Rechtin M, Bositty A, Wilson JF. Advancing motivational interviewing training with artificial intelligence: ReadMI. Adv Med Educ Pract 2021;12:613-618. doi:10.2147/AMEP.S312373. Accessed July 7, 2023.
28. Henry KE, Kornfield R, Sridharan A, Linton RC, Groh C, Wang T, Wu A, Mutlu B, Saria S. Human-machine teaming is key to AI adoption: clinicians’ experiences with a deployed machine learning system. NPJ Digit Med 2022;5(1):97. doi:10.1038/s41746-022-00597-7. Accessed July 7, 2023.
29. Hauth J, Jabri S, Kamran F, Feleke EW, Nigusie K, Ojeda LV, Handelzalts S, Nyquist L, Alexander NB, Huan X, Wiens J, Sienko KH. Automated loss-of-balance event identification in older adults at risk of falls during real-world walking using wearable inertial measurement units. Sensors (Basel) 2021;21(14):4661. doi:10.3390/s21144661. Accessed July 7, 2023.
30. Abràmoff MD, Lavin PT, Birch M, Shah N, Folk JC. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit Med 2018;1:39. doi:10.1038/s41746-018-0040-6. Accessed July 7, 2023.
31. Seyam M, Weikert T, Sauter A, Brehm A, Psychogios MN, Blackham KA. Utilization of artificial intelligence-based intracranial hemorrhage detection on emergent noncontrast CT images in clinical workflow. Radiol Artif Intell 2022;4(2):e210168. doi:10.1148/ryai.210168. Accessed July 7, 2023.
32. Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: focus on clinicians. J Med Internet Res 2020;22(6):e15154. doi:10.2196/15154. Accessed July 7, 2023.
33. Markus AF, Kors JA, Rijnbeek PR. The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies. J Biomed Inform 2021;113:103655. https://pubmed.ncbi.nlm.nih.gov/33309898/. Accessed July 7, 2023.
34. Rojas JC, Teran M, Umscheid CA. Clinician trust in artificial intelligence: what is known and how can trust be facilitated. Crit Care Clin 2023 Mar 27. doi:10.1016/j.ccc.2023.02.004. Accessed July 7, 2023.
35. Office of the National Coordinator for Health Information Technology. Decision Support Interventions and Predictive Models Fact Sheet. Health Data, Technology, and Interoperability: Certification Program Updates, Algorithm Transparency, and Information Sharing (HTI-1) Proposed Rule. April 2023. https://www.healthit.gov/sites/default/files/page/2023-04/NPRM_DSI_fact%20sheet-508.pdf. Accessed July 7, 2023.
36. Chang TJ, Bridges JFP, Bynum M, Jackson JW, Joseph JJ, Fischer MA, Lu B, Donneyong MM. Association between patient-clinician relationships and adherence to antihypertensive medications among Black adults: an observational study design. J Am Heart Assoc 2021;10(14):e019943. doi:10.1161/JAHA.120.019943. Accessed July 7, 2023.
37. Haywood C Jr, Lanzkron S, Bediako S, Strouse JJ, Haythornthwaite J, Carroll CP, Diener-West M, Onojobi G, Beach MC; IMPORT Investigators. Perceived discrimination, patient trust, and adherence to medical recommendations among persons with sickle cell disease. J Gen Intern Med 2014;29(12):1657-1662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242876/. Accessed July 7, 2023.
38. Obermeyer Z, Powers B, Vogeli C, Mullainathan S. Dissecting racial bias in an algorithm used to manage the health of populations. Science 2019;366(6464):447-453. https://www.science.org/doi/10.1126/science.aax2342. Accessed July 7, 2023.
39. Jain A, Brooks JR, Alford CC, Chang CS, Mueller NM, Umscheid CA, Bierman AS. Awareness of racial and ethnic bias and potential solutions to address bias with use of health care algorithms. JAMA Health Forum 2023;4(6):e231197. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10238944/. Accessed July 7, 2023.
40. Grob R, Darien G, Meyers D. Why physicians should trust in patients. JAMA 2019;321(14):1347-1348. doi:10.1001/jama.2019.1500. Accessed July 7, 2023.
41. James CA, Wachter RM, Woolliscroft JO. Preparing clinicians for a clinical world influenced by artificial intelligence. JAMA 2022;327(14):1333-1334. doi:10.1001/jama.2022.3580. Accessed July 7, 2023.
42. Food and Drug Administration. Guidance Document. Clinical Decision Support Software: Guidance for Industry and Food and Drug Administration Staff. September 2022. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/clinical-decision-support-software. Accessed July 7, 2023.
43. Weissman GE. FDA regulation of predictive clinical decision-support tools: what does it mean for hospitals? J Hosp Med 2021;16(4):244-246. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8025589/. Accessed July 7, 2023.
44. Price WN 2nd, Gerke S, Cohen IG. Potential liability for physicians using artificial intelligence. JAMA 2019;322(18):1765-1766. doi:10.1001/jama.2019.15064. Accessed July 7, 2023.
45. Triberti S, Durosini I, Pravettoni G. A “third wheel” effect in health decision making involving artificial entities: a psychological perspective. Front Public Health 2020 Apr 28;8:117. https://www.frontiersin.org/articles/10.3389/fpubh.2020.00117/full. Accessed July 7, 2023.