Run algorithm on all N records for which truth is known:
Algorithm | |||
---|---|---|---|
+ | - | ||
Truth | + | A | B |
- | C | D |
Alg sensitivity = A/(A+B)
Alg specificity = D/(C+D)
From the Algorithm-positive charts (A and C), do human review on a sample (a from A and c from C)
The number, a*, from the sample that the human review finds to be positive is a hypergeometric random variable (A, AP, a) = (population size, subpopulation size, sample size)
From the True positive charts, A, a are sampled
Sampled? | Total | |||
---|---|---|---|---|
yes | no | |||
Human Review | + | a* | AP - a* | AP |
- | a-a* | AN-a-a* | AN | |
Total | a | A-a | A |
a* = STP (sample true positives)
a-a* = SFN (sample false negatives)
Similarly for c*
From the True negative charts, C, c are sampled
Sampled? | Total | |||
---|---|---|---|---|
yes | no | |||
Human Review | + | c* | CP - c* | CP |
- | c-c* | CN-c-c* | CN | |
Total | c | C-c | C |
c* = SFP (sample false positives)
c-c* = STN (sample true negatives)
Estimated TP = STPA/a
Estimated FN = SFNA/a
Estimated TN = STNC/c
Estimated FP = SFPC/c
Estimated HR Sensitivity = Estimated TP/(Estimated TP + Estimated FN) = (STPA/a)/( STPA/a+ SFNA/a) = … = a*/a
Estimated HR Specificity = Estimated TN/(Estimated TN + Estimated FP) = (STNC/c)/( STNC/c+ SFPC/c) = … = (c-c*)/c
Var(c*) = var(c-c*) = (cCP(C-c)CN)/(C2(C-1))
Var(a*) = (aAP(A-a)AN)/(A2(A-1))
So the variance of the estimated HR sensitivity and HR specificity:
Var((c-c*)/c) = (CP(C-c)CN)/(cC2(C-1))
Var(a*/a) = (AP(A-a)AN)/(aA2(A-1))
Overall:
Sensitivity = Alg sensitivity x HR sensitivity
Specificity = Alg specificity + (1 – Alg specificity) x HR specificity
Method 1: Assuming Alg sensitivity and specificity are known constants (because all charts will undergo algorithm and the truth is known).
Var(Sensitivity) = (Alg sensitivity)2 x Var(HR sensitivity)
Var(Specificity) = Var(HR specificity) + Var(HR specificity) x (Alg specificity)2
Table for sample size a = c = 50 (so 50 true + and 50 true -)
Algorithm Sensitivity | Algorithm Specificity | Human Review Sensitivity | Human Review Specificity | Sensitivity 95% CI Half-width | Specificity 95% CI Half-width |
---|---|---|---|---|---|
0.95 | 0.50 | 0.80 | 0.85 | 0.09 | 0.11 |
0.95 | 0.50 | 0.80 | 0.90 | 0.09 | 0.09 |
0.95 | 0.50 | 0.80 | 0.95 | 0.09 | 0.07 |
0.95 | 0.70 | 0.80 | 0.85 | 0.09 | 0.12 |
0.95 | 0.70 | 0.80 | 0.90 | 0.09 | 0.10 |
0.95 | 0.70 | 0.80 | 0.95 | 0.09 | 0.07 |
0.95 | 0.50 | 0.85 | 0.85 | 0.08 | 0.11 |
0.95 | 0.50 | 0.85 | 0.90 | 0.08 | 0.09 |
0.95 | 0.50 | 0.85 | 0.95 | 0.08 | 0.07 |
0.95 | 0.70 | 0.85 | 0.85 | 0.08 | 0.12 |
0.95 | 0.70 | 0.85 | 0.90 | 0.08 | 0.10 |
0.95 | 0.70 | 0.85 | 0.95 | 0.08 | 0.07 |
0.95 | 0.50 | 0.90 | 0.85 | 0.07 | 0.11 |
0.95 | 0.50 | 0.90 | 0.90 | 0.07 | 0.09 |
0.95 | 0.50 | 0.90 | 0.95 | 0.07 | 0.07 |
0.95 | 0.70 | 0.90 | 0.85 | 0.07 | 0.12 |
0.95 | 0.70 | 0.90 | 0.90 | 0.07 | 0.10 |
0.95 | 0.70 | 0.90 | 0.95 | 0.07 | 0.07 |
0.99 | 0.50 | 0.80 | 0.85 | 0.09 | 0.11 |
0.99 | 0.50 | 0.80 | 0.90 | 0.09 | 0.09 |
0.99 | 0.50 | 0.80 | 0.95 | 0.09 | 0.07 |
0.99 | 0.70 | 0.80 | 0.85 | 0.09 | 0.12 |
0.99 | 0.70 | 0.80 | 0.90 | 0.09 | 0.10 |
0.99 | 0.70 | 0.80 | 0.95 | 0.09 | 0.07 |
0.99 | 0.50 | 0.85 | 0.85 | 0.08 | 0.11 |
0.99 | 0.50 | 0.85 | 0.90 | 0.08 | 0.09 |
0.99 | 0.50 | 0.85 | 0.95 | 0.08 | 0.07 |
0.99 | 0.70 | 0.85 | 0.85 | 0.08 | 0.12 |
0.99 | 0.70 | 0.85 | 0.90 | 0.08 | 0.10 |
0.99 | 0.70 | 0.85 | 0.95 | 0.08 | 0.07 |
0.99 | 0.50 | 0.90 | 0.85 | 0.07 | 0.11 |
0.99 | 0.50 | 0.90 | 0.90 | 0.07 | 0.09 |
0.99 | 0.50 | 0.90 | 0.95 | 0.07 | 0.07 |
0.99 | 0.70 | 0.90 | 0.85 | 0.07 | 0.12 |
0.99 | 0.70 | 0.90 | 0.90 | 0.07 | 0.10 |
0.99 | 0.70 | 0.90 | 0.95 | 0.07 | 0.07 |
Method 2: Assuming Alg sensitivity and specificity are not known constants and use Delta Method for variance. The variance for the Alg assumes the A is binomial(A+B, sensitivity) and C is binomial(C+D,1-specificity)
Var(Sensitivity) = (Alg sensitivity)2 x Var(HR sensitivity) + (HR sensitivity)2 x Var(Alg sensitivity)
Var(Specificity) = Var(HR specificity) + Var(HR specificity) x (Alg specificity)2
+ Var(Alg specificity) x (HR specificity)2 + Var(Alg specificity)
There was no perceptible change in CI width. The variance in the estimates were small due to the large sample size (C+D) and high sensitivity of the algorithm.